Using Data Mining Techniques to Increase Efficiency of Customer Relationship Management Process
نویسنده
چکیده
Recently the Customer Relationship Management (CRM) has been achieved an increasing popularity in business management. CRM includes all the steps which an organization employs to create and establish beneficial relationships with the customers. Using technologies such as data warehousing and data mining CRM can be introduced as a new area where companies can gain the competitive advantage. Via CRM system a company can improve its processes to deliver better service at a lower cost. By use of data mining techniques, companies can extract hidden information of the customers from large databases. So, organizations can determine the value of customers and predict their future behavior and requirements. Data mining tools can answer business questions which were time-consuming to track in the past. We believe that it is possible to improve CRM efficiency, to have an effective and rapid response to customer needs, by integrating CRM and data mining techniques. In this study we investigate major concepts of CRM and data mining. Also we introduce our idea to employ data mining techniques in CRM. This study show that using data mining techniques in CRM will improve CRM's efficiency and provide a better prediction ability to companies, organizations and industries to achieve more Profitability.
منابع مشابه
Customer behavior mining based on RFM model to improve the customer relationship management
Companies’ managers are very enthusiastic to extract the hidden and valuable knowledge from their organization data. Data mining is a new and well-known technique, which can be implemented on customers data and discover the hidden knowledge and information from customers' behaviors. Organizations use data mining to improve their customer relationship management processes. In this paper R, F, an...
متن کاملCustomer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملIntegrating AHP and data mining for effective retailer segmentation based on retailer lifetime value
Data mining techniques have been used widely in the area of customer relationship management (CRM). In this study, we have applied data mining techniques to address a problem in business-to-business (B2B) setting. In a manufacturer-retailer-consumer chain, a manufacturer should improve its relationship with retailers to continue its business. Segmentation is a useful tool for identifying groups...
متن کاملModelling Customer Attraction Prediction in Customer Relation Management using Decision Tree: A Data Mining Approach
In Today’s quality- based competitive world, known as knowledge age, customer attraction is of ultimate importance. In respect to the slogan “customer is always right”, customer relation management is the core of an organizational strategy playing an important role in four aspects of customer identification, customer attraction, customer retaining, and customer satisfaction. Commercial organiza...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کامل